Channel arrest: implications from membrane resistance in turtle neurons.
نویسندگان
چکیده
A widespread defense strategy used by hypoxia-tolerant animals is metabolic depression. One possible mechanism for metabolic depression is "channel arrest." This hypothesis predicts that ion leakage through plasma membrane leakage channels is reduced during an anoxic episode. The decreased ion flux would result in the conservation of energy through the reduction of ATP-demanding ion pumping. We tested this hypothesis with the anoxia-tolerant turtle (Chrysemys picta) as a model system. With intracellular recording used in cortical slices, whole cell input resistance and specific membrane resistivity were monitored under control and anoxic conditions. There were no significant changes in resistance, indicating that the channel arrest defense mechanism was not utilized for energy conservation during short-term anoxia (less than or equal to 120 min).
منابع مشابه
Effects of anoxia and metabolic arrest on turtle and rat cortical neurons.
The responses of turtle and rat cortical pyramidal neurons to various pharmacological treatments were measured using intracellular recordings. Turtle neurons survived both anoxia and pharmacological anoxia for 180 min with no noticeable effect. Rat pyramidal neurons responded with a loss in membrane resistance, followed by a transient hyperpolarization, and a subsequent depolarization to a zero...
متن کاملThe Effects of Buthotus schach Scorpion Venom on Electrophysiological Properties of Magnocellular Neurons of Rat Supraoptic Nucleus
Potassium channels are trans-membrane proteins, which selectively transport K+ ions across cell membranes and play a key role in regulating the physiology of excitability cells and signal transduction pathways. Bothutous Schach (BS) scorpion venom consists of several polypeptides that could modulate ion channels. In this study, the effects of BS crude venom on passive and active electrophysiolo...
متن کاملThe Effects of Buthotus schach Scorpion Venom on Electrophysiological Properties of Magnocellular Neurons of Rat Supraoptic Nucleus
Potassium channels are trans-membrane proteins, which selectively transport K+ ions across cell membranes and play a key role in regulating the physiology of excitability cells and signal transduction pathways. Bothutous Schach (BS) scorpion venom consists of several polypeptides that could modulate ion channels. In this study, the effects of BS crude venom on passive and active electrophysiolo...
متن کاملAn inward current induced by a putative cyclic nucleotide-gated channel in rat cerebellar Purkinje neurons
The roles of cyclic nucleotide-gated (CNG) channels in sensory transduction have long been recognized. More recent studies found that CNG channels are distributed in multiple brain regions involved in memory and learning, including the cortex, hippocampus and cerebellum. These findings suggest that their functions are not limited to sensory perception, but also to neuronal plasticity phenomena,...
متن کاملATP-sensitive K1 channel activation provides transient protection to the anoxic turtle brain
Pék-Scott, Marta, and Peter L. Lutz. ATP-sensitive K1 channel activation provides transient protection to the anoxic turtle brain. Am. J. Physiol. 275 (Regulatory Integrative Comp. Physiol. 44): R2023–R2027, 1998.—There is wide speculation that ATP-sensitive K1 (KATP) channels serve a protective function in the mammalian brain, being activated during periods of energy failure. The aim of the pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The American journal of physiology
دوره 261 5 Pt 2 شماره
صفحات -
تاریخ انتشار 1991